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Abstract

Two formal languages are f-equivalent if their symmetric difference L1!L2

is a finite set — that is, if they differ on only finitely many words. The
study of f-equivalent languages, and particularly the DFAs that accept them,
was recently introduced [1]. First, we restate the fundamental results in this
new area of research. Second, our main result is a faster algorithm for the
natural minimization problem: given a starting DFA D, find the smallest
(by number of states) DFA D

′ such that L(D) and L(D′) are f-equivalent.
Finally, we present a technique that combines this hyper-minimization with
the well-studied notion of a deterministic finite cover automaton [3, 6, 2], or
DFCA, thereby extending the application of DFCAs from finite to infinite
regular languages.

1 Introduction, Notation, and Prior Results

We use the standard definition of a DFA as a 5-tuple (Q,Σ, δ, q0, A) where Q is the
state-set, Σ is the alphabet, δ is the extended transition function, q0 is the starting
state, and A is the accepting subset of Q. For more on DFAs, see any standard
reference [7, 5]. In all algorithm analyses, “n” implicitly refers to the number of
states of the DFA in question. Where it is unspecified, Lx is assumed to be a lan-
guage, Dx a DFA, and qx a state. Finally Q1, δ1 etc should be assumed to be the
components of D1.

The now-classical notions of DFA equivalence and minimization are well-studied
[5, 7]. Two DFAs D1 and D2 are equivalent if the languages they induce (L(D1)
and L(D2)) are equal, and we write this as D1 ≡ D2. In the recently-introduced
study of f-equivalence [1] 0, this condition is loosened: instead of requiring that the
languages be equal, one allows them to differ on finitely many words:

Definition 1 (f-equivalence). Two languages L1 and L2 are said to be f-equivalent if
L1"L2, their symmetric difference, is a finite set. We write L1 ∼ L2. This relation
is extended to DFAs in the obvious way: if L(D) is the language recognized by a
DFA D, then we write D1 ∼ D2 whenever L(D1) ∼ L(D2). Finally, f-equivalence
can also be considered on DFA states. States q1 and q2 are f-equivalent (q1 ∼

0There, f-equivalence is called either “almost equivalence” or “finite difference” We use the new
term here because it is shorter, and cannot be misunderstood as excluding total equivalence.

1

Classical Equivalence

• D1 and D2 recognize the same 
language.

• L(D1) ⊗ L(D2) is empty

• Notation: D1≈D2
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Classical Equivalence F-Equivalence

• D1 and D2 recognize the same 
language.

• L(D1) ⊗ L(D2) is empty

• Notation: D1≈D2

• D1 and D2 “almost” recognize the 
same language.

• L(D1) ⊗ L(D2) is finite

• Notation: D1∼D2
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Showing Myhill-Nerode equivalence classes

Small Example



Showing f-equivalence classes
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Showing Myhill-Nerode equivalence classes

Small Example



Small Example – classically minimized



Small Example – classically minimized

Showing f-equivalence classes



Small Example – hyper-minimized

Showing f-equivalence classes



Small Example – hyper-minimized



Elementary properties

• Let q1 be a state from DFA D1, and q2 be a 
state from D2 . If q1 ∼ q2, then for any input 
c, δ(q1 , c) ∼ δ(q2 , c).

• If D1 ∼ D2 , then ∀q1 ∈ Q1 , ∃q2 ∈ Q2: q1 ∼ 
q2.



Preamble and Kernel



Kernel isomorphism
If D1 ~ D2 and both are classically minimized, 
then their kernels are isomorphic.



Preamble isomorphism
If D1 ~ D2 and both are hyper-minimized, then 
their preambles are (somewhat) isomorphic. 
These aspects within the preamble may differ:

• Whether a preamble state is accepting or not.

• Transitions from the preamble to the kernel 
can move within an f-equivalence class.
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1

Classical Minimization
1. Delete unreachable states

2. Find equivalent states

3. Merge states within each 
equivalence class
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1

Classical Minimization Hyper-Minimization
1. Delete unreachable states

2. Find equivalent states

3. Merge states within each 
equivalence class

1. (Classically) Minimize

2. Find equivalent states

3. Merge states within each 
equivalence class

Minimization Algorithm



1. Classically minimal



2. Finding f-equivalent 
state classes

i. Let D⊗ = D⊗D be the standard DFA cross-
product construction for symmetric 
difference.

ii. Find all states (q0, q1) in D⊗ which induce a 
finite language – q0 and q1 are f-equivalent 
in D.

iii. Use the list of these pairs to construct the 
equivalence classes.



2.i. Cross-product with self



2.ii. Find all right-finite states

Equivalent pairs:
(‘start’, ‘start’)
(1, 1)
(3,3)

Right-finite state



2.ii. Find all right-finite states

Equivalent pairs:
(‘start’, ‘start’)
(1, 1)
(3,3)
(3, ‘start’)
(‘start’, 3)

Right-finite state



2.iii. Construct equivalence classes from pairs

Equivalent pairs:
(‘start’, ‘start’)
(1, 1)
(3,3)
(3, ‘start’)
(‘start’, 3)

Equivalence classes:
{‘start’, 3}
{1}

Right-finite state



Showing f-equivalence classes

Equivalence classes:
{‘start’, 3}
{1}

2.iii. Construct equivalence classes from pairs



Showing f-equivalence classes

3. Merge states within each equivalence class



Finite-Factoring

• Motivation: hyper-minimization changes the 
language

• Use hyper-minimization to split a regular 
language into two parts: infinite and finite

• Use a DFCA to recognize the finite part

• What is a DFCA?



Finite-Factoring 
Algorithm

1. Let D′ = hyper_minimize(D)

2. Let Df = xor_cross_product(D, D′)
3. Let n = max(|w| : w ∈ L(Df))

4. Minimize the DFCA (Df, n)

5. Return (D′, (Df, n))



Finite-Factoring
start



Finite-Factoring

DFA
DFCA
(n = 9)

start

start



 Open Problems,
Questions

Source code: http://ianab.com/hyper/

Thanks: Lenny Pitt, Ian Shipman, Viliam Geffert, 
Python, Keynote, Graphviz

http://ianab.com/hyper
http://ianab.com/hyper

