Ryper-Minimization
in O(n?)
Andrew Badr

andrewbadr@gmail.com
CIAA 2008



mailto:andrewbadr@gmail.com
mailto:andrewbadr@gmail.com

What is hyper-minimization?

Classical Equivalence

* D) and D3 recognize the same
language.

* L(Di) ® L(D>) is empty

* Notation: D,=D>




What is hyper-minimization?

Classical Equivalence F-Equivalence

* D and D3 recognize the same * D) and D; “almost” recognize the
language. same language.

° L(Di) ® L(D>) is empty * L(Di) ® L(Dy) is finite

* Notation: D =D> * Notation: D|~D>




Small Example




Small Example

start ~ 0

~L

Showing Myhill-Nerode equivalence classes



Small Example

0 » | :
start  ~ 1 /()v \OA

Showing f-equivalence classes



Small Example

start ~ 0

~L

Showing Myhill-Nerode equivalence classes



Small Example — classically minimized




Small Example — classically minimized

Showing f-equivalence classes



Small Example — hyper-minimized

Showing f-equivalence classes



Small Example — hyper-minimized

1
[
2O
~ 0



Elementary properties

® | et q be a state from DFA D|,and qz be a
state from D> . If qi1 ~ q2, then for any input

¢, 0(qi,c) ~ 0(q2, ©).

® [fD) ~D;y,then vqi € Qi1,3q2 € Q2:qI ~
qQz.



Preamble and Kernel




Kernel isomorphism

If D1 ~ D2 and both are classically minimized,
then their kernels are isomorphic.




Preamble isomorphism

If D ~ D2 and both are hyper-minimized, then
their preambles are (somewhat) isomorphic.
These aspects within the preamble may differ:

* Whether a preamble state is accepting or not.

* Transitions from the preamble to the kernel
can move within an f-equivalence class.



Minimization Algorithm

Classical Minimization

|. Delete unreachable states
2. Find equivalent states

3. Merge states within each
equivalence class




Minimization Algorithm

Classical Minimization | Hyper-Minimization

|. Delete unreachable states |l. (Classically) Minimize
2. Find equivalent states 2. Find equivalent states

3. Merge states within each |3. Merge states within each
equivalence class equivalence class




|. Classically minimal




2. Finding f-equivalent
state classes

i. Let De = D®D be the standard DFA cross-

product construction for symmetric
difference.

ii. Find all states (qo, q1) in De which induce a

finite language — qo and q| are f-equivalent
in D.

iii. Use the list of these pairs to construct the
equivalence classes.



2.i. Cross-product with self




2.ii. Find all right-finite states

Equivalent pairs:
(‘start’, ‘start’)

(1, 1)
(3,3)

1

('start’, 1)

1
(o ®

Right-finite state




2.ii. Find all right-finite states

Equivalent pairs:
(‘start’,'start’)

-
(3.3) \

(3, start’)
1

(‘start’, 3)

0

1
(o ®

Right-finite state

1

(‘start’, 1)




2.iii. Construct equivalence classes from pairs

Equivalent pairs:
(‘start’,'start’)
(1, 1)

(3,3)

(3,'start’)
(‘start’, 3)

\ 4
Equivalence classes:
{‘start’, 3} (start’, 1)

i}

Right-finite state




2.iii. Construct equivalence classes from pairs

Equivalence classes:

Showing f-equivalence classes



3. Merge states within each equivalence class

Showing f-equivalence classes



Finite-Factoring

® Motivation: hyper-minimization changes the
language

® Use hyper-minimization to split a regular
language into two parts: infinite and finite

® Use a DFCA to recognize the finite part
® What is a DFCA?



Finite-Factoring
Algorithm

|. Let D" = hyper_minimize(D)

2. Let Df = xor_cross_product(D, D)
3. Let n = max(|w| :w € L(Dy)

4. Minimize the DFCA (Dg n)

5. Return (D', (Dg n))



Finite-Factoring




Finite-Factoring




Open Problems,
Questions

Source code: http://ianab.com/hyper/

Thanks: Lenny Pitt, lan Shipman,Viliam Geffert,
Python, Keynote, Graphviz


http://ianab.com/hyper
http://ianab.com/hyper

